Habitat Evaluation Scoring Method to Estimate Ecosystem Service Improvements from Restoration

Timothy Barber, Jennifer Lyndall, and Wendy Mahaney

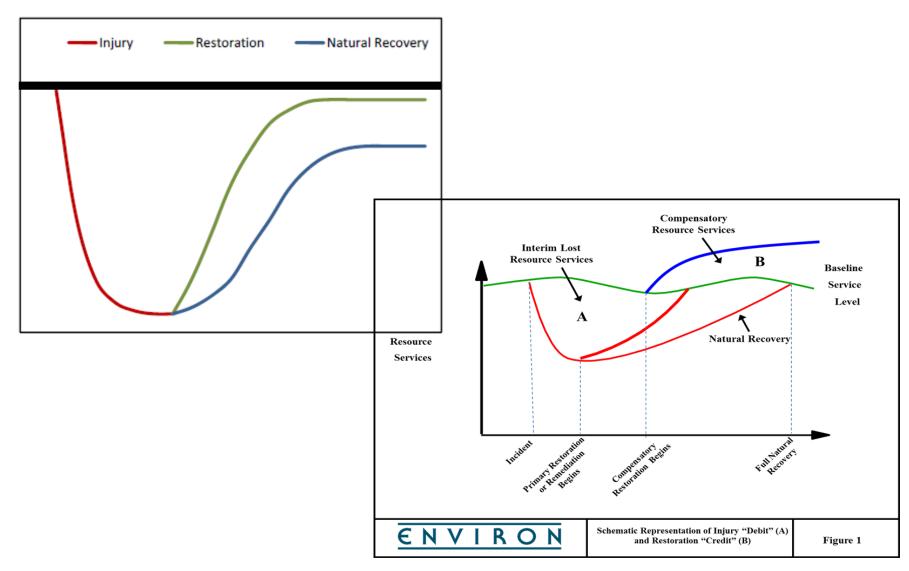
The Challenge – Valuation of Ecosystem Services from Restoration

Natural resource damage assessments attempt to make the public whole through restoration or replacement of the injured natural resource, or for acquisition of an equivalent resource [CERCLA §107(f)(1)].

How can you value the flow of ecosystem services in a scientifically sound manner?

The Natural Resource Damage Assessment Process

- Evaluate injury to natural resource services
- Determine whether injury has occurred
- Quantify the extent and severity of injury
- Injury estimates are used to scale restoration actions


Valuation of Injury/Restoration Credit

- Best professional judgment
- Literature reviews
- Case precedents
- Functional assessment methods

Habitat Equivalency Analysis (HEA)

- Service to service valuation method
- Uses resource-specific units
- Represents "services" provided but for the injury
- Two Components
 - -Injury (debit) calculation
 - -Restoration (credit) calculation

Restoration-Based Valuation

Habitat Equivalency Analysis

- Parameters
 - -Present Year
 - -Project Start Year

- -Relative Benefits/Service Improvement
- -Maturation Curve
- -Project Lifespan
- -Discount Rate

Habitat Equivalency Analysis

Maturity Curve

- -Time to full maturity/recovery of project
- -Shape of recovery trajectory
 - Linear
 - Sigmoidal
- Lifespan
 - -Life expectancy of project
 - -Can incorporate multiple factors
 - Erosion rates
 - Sea level rise
 - Storm damage

Habitat Equivalency Analysis

- Relative Benefit/Service Improvement

 Improvement in ecosystem function relative to baseline conditions
 - Historical or pre-incident conditions
 - Adjacent natural marsh condition (reference site)
 - Condition after injury (pre-restoration condition)
 - -No standard method of determining service improvement
 - -Often arbitrarily determined

"Ecosystem functions are the physical, chemical, and biological processes or attributes that contribute to the self-maintenance of an ecosystem" – King & Mazzotta 2000

- Biomass production
- Decomposition
- Water retention, storage, processing
- Nutrient cycling
- Soil formation and retention
- Provision of habitat

Functional Assessments

- Used to evaluate ecosystem functions and/or services
- Range from quick, semi-quantitative to detailed, quantitative models
- Examples: WVA, HSI, HGM
 - -Mostly for wetland habitats
 - -A few for other habitat types
 - Barrier islands, forests, lakes & streams
 - -Habitat-specific and often regional
- Input parameters vary by approach

Functional Assessments

	Protocol	Components	Habitat Types	Geographic Location
FQI / FQAI	Floristic Quality Assessment Indices	Vegetation by ecological conservatism	Wetland, forest, prairie, savannah (separately by community types)	Regional - US
HEP / HSI	Habitat Evaluation Procedure / Habitat Suitability Indices	Quality and quantity of habitat for wildlife, fish, invertebrates	Most terrestrial, wetland & aquatic habitats	Regional - US
HGM	Hydrogeomorphic Approach	Assessment of wetland functions (hydrology, biogeochemistry, habitat)	Wetlands (separately for each subclass)	Regional - US
IBI	Index of Biotic Integrity	Biological condition (fish, plants, invertebrates)	Lakes, streams, wetlands	Regional - US
RAP	Rapid assessment protocols	8 Wetland function (hydrology, detritus, vegetation, fauna)	Wetlands (separately by subclass)	Regional - NE and Midwest US
WET	Wetland Evaluation Technique	11 wetland functions (hydrology, recreation, biogeochemistry, habitat)	Wetlands (can compare different types)	US
WVA	Wetland Value Assessment	Quantity and quality of habitat	Wetlands, Barrier Island/Headland, Coastal Chenier/Ridge	Coastal Louisiana
				ENVIRO

New Hybrid Functional Assessment

- Compare baseline site to postrestoration expected improvements
 - -Score pre- and post- restoration conditions
 - -Score references sites to establish baseline
- Flexible list of parameters
 - Representing biological, physical, chemical, and human use functions
 - -Generalizable across habitats & regions
 - -Optional weighting factors for parameters

Hybrid Model Parameters

- Biological Functions
 - -Vegetation quality
 - -Wildlife Utilization
 - Biodiversity
 - Habitat Quality
- Chemical Functions
 - -Water Quality
 - -Carbon Export
 - Nutrient cycling

- Physical Functions
 - Adjacent upland support
 - -Substrate quality
 - Hydrologic
 Modification
 - Hydrologic
 Connectivity
 - -Erosion Control
 - Shoreline Protection
- Human Use Potential

Hybrid Assessment Model

- Scores individual ecosystem functions on scale of 0-4
 - -0 represents little to no functional capacity
 - -4 represents the highest level of function
- Weighting factors can be used to adjust which functional parameters are most important or applicable to a restoration project

Hybrid Scoring Sheet

Project Site:		_						Date:						
Habitat Type:	Date: Name:													
		Р	re-Res	storati	on Sco	ore	Post-Restoration Score							
Metric	Weighting Factor	0	1	2	3	4	TOTAL	0	1	2	3	4	TOTAL	
		BIOL	.OGIC/	AL FUN		N								
Vegetation Quality														
% Ground Cover														
% Canopy Cover														
% Invasive Species														
% Open Water														
Wildlife Utilization					•									
Fish and invertebrates														
Mammals														
Birds														
Turtles														
Habitat Quality					•									
Refugia/Shelter														
Nursery Habitat														
Foraging Habitat														
		PH	YSICAL	L FUNC	CTION			-						
Adjacent Upland Support														
Substrate Quality														
Hydrologic Modification														
Hydrologic Connectivity														
Erosion Control/Sediment Retention														
Shoreline Protection														
		CHE	EMICA	L FUN	CTION									
Water Quality														
Productivity														
Nutrient Cycling														
		HUN	1AN U	SE FUI	NCTIO	N								
Human Use Potential														
	SITE TOTAL					Pre						Post		

ENVIRON


Hybrid Scoring Sheet Criteria

SCORE	0	1	2	3	4
		BIOLOGICAL	FUNCTION	-	
Vegetation Quality					
% Ground Cover	0%	25%	50%	75%	100%
% Canopy Cover	0%	25%	50%	75%	100%
% Invasive	76-100%	41-75%	21-40%	11-20%	0-10%
% Open Water	76-100%	41-75%	21-40%	11-20%	0-10%
Wildlife Utilization / Diver	sity				
Fish & invertebrates	Low / no diversity	Moderate-low diversity	Moderate diversity	Moderate-high diversity	High diversity
Mammals	Low / no diversity	Moderate-low diversity	Moderate diversity	Moderate-high diversity	High diversity
Birds	Low / no diversity	Moderate-low diversity	Moderate diversity	Moderate-high diversity	High diversity
Turtles	Low / no diversity	Moderate-low diversity	Moderate diversity	Moderate-high diversity	High diversity
Habitat Quality For Typical	Species in this Habitat T	ype			
Refugia/Shelter	Little / no function	Heavily impaired	Moderately impaired	Slightly impaired	Not impaired
Nursery Habitat	Little function	Heavily impaired	Moderately impaired	Slightly impaired	Not impaired
Foraging Habitat	Little function	Heavily impaired	Moderately impaired	Slightly impaired	Not impaired

Hybrid Scoring Sheet Criteria

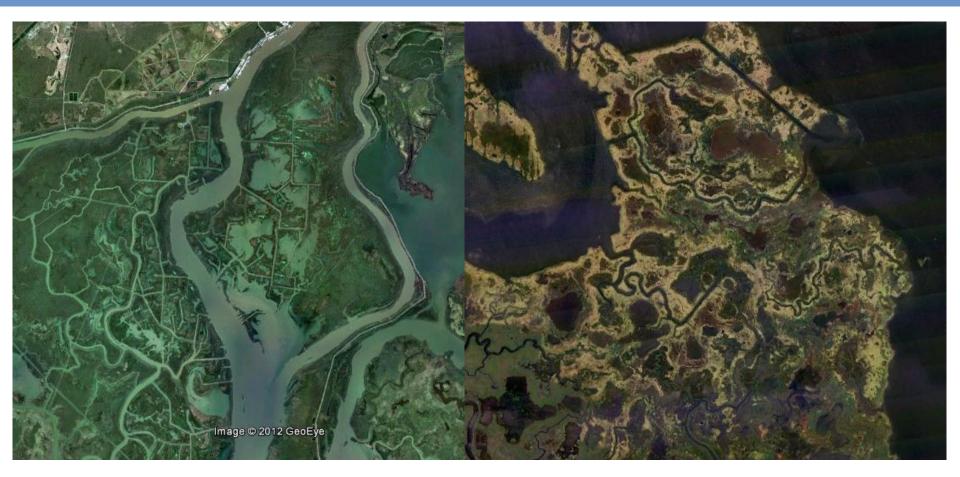
SCORE	0	1	2	3	4							
PHYSICAL FUNCTION												
Adjacent Upland Support Subwatershed is > 90% developed		Subwatershed is 70- 90% developed	Subwatershed is 40- 70% developed	Subwatershed is 20- 40% developed	Subwatershed is < 20% developed							
Substrate Quality	bstrate Quality Severely altered; function heavily impaired Highly imp		Moderately impacted; function moderately impaired	Slightly impacted; function slightly impaired	High quality; no functional impairment							
Hydrologic Modification	ydrologic Modification Severe; heavily High; function controlled impaired		Moderate; some impairement	Slight; some impairement	None; mostly natural function							
Hydrologic Connectivity	ydrologic Connectivity Hydrologic connections severed imp		Hydrologic connections moderately impaired	Hydrologic connections slightly impaired	Hydrologic connections primarily intact							
Erosion Control / Sediment Retention	High erosion, no retention	erosion little		Moderate-low erosion, moderate- high retention	Low erosion, high retention							
Shoreline Protection			Moderate protection	Moderate-high protection	High protection							
		CHEMICAL	FUNCTION									
Water Quality	Very poor	Severely impaired	Moderately impaired	Slightly impaired	Little impairement							
Productivity			Low to moderate productivity	Moderate productivity	Typical of habitat type							
Nutrient Cycling	ent Cycling Slow cycling and little Moderate-slow nutrient removal cycling and removal		Moderate cycling and removal	Moderate-fast cycling and removal	Rapid cycling and high nutrient removal							
		HUMAN USE	FUNCTION									
Human Use Potential	Low	Moderate-Low	Moderate	Moderate-High	High							

Open Water and Marsh Edge

Vegetative Cover

High vegetative cover

Low vegetative cover


Landscape Setting: Upland Support

Urban setting -Low upland support Rural setting – High upland support

Image source: Google

Hydrologic Modification

Severe hydrologic modification

Low hydrologic modification

Image source: Google

Invasive Species

Species Photo credit: chicagobotanic.org

Example Sites

Garbage dump

Marsh

Reference Marsh

Photo Credit: Mary Sorensen

Hybrid Scoring Example

<u>Pre-Restoration</u> <u>Condition</u>

- Current condition of the restoration site
- <u>Post-Restoration</u>
 <u>Condition</u>
 - Expected conditions after restoration is completed
 - -At full maturity

<u>Baseline Condition</u>

- Identical habitat type
- Close proximity to restoration site
- Not affected by the "disturbance event"
- Functions as a reference standard for comparison

Hybrid Scoring Example

Project Site: Example One			Date: 2012																
Habitat Type: <u>Salt Marsh</u>							N	ame:	ΤВ										
		Pre-Restoration Score Post-Restoration Score				Baseline Conditions													
	Weighting	0						•						-					
Metric	Factor	0	1	2	3	4	TOTAL	0	1	2	3	4	TOTAL	0	1	2	3	4	TOTAL
	BIOL	OGIC	AL FL	JNCTI	ON			-											
Vegetation Quality																			
% Ground Cover					Х		3					Х	4					Х	4
% Canopy Cover		Х					0			Х			2				Х		3
% Invasive Species		Х					0					Х	4					Х	4
% Open Water			Х				1				Х		3				Х		3
Wildlife Utilization																			
Fish and invertebrates			Х				1				Х		3					Х	4
Mammals			Х				1				Х		3					Х	4
Birds				Х			2				Х		3					Х	4
Turtles			Х				1				Х		3					Х	4
Habitat Quality																			
Refugia/Shelter			Х				1				Х		3					Х	4
Nursery Habitat			Х				1				Х		3					Х	4
Foraging Habitat				Х			2				Х		3					Х	4
	PH	YSICA	L FUI	NCTIC	N														
Adjacent Upland Support			Х				1		Х				1		Х				1
Substrate Quality			Х				1			Х			2				Х		3
Hydrologic Modification			Х				1			Х			2				Х		3
Hydrologic Connectivity			Х				1				Х		3				Х		3
Erosion Control/Sediment Retention		Х					0				Х		3				Х		3
Shoreline Protection		Х					0				Х		3				Х		3
	CHE	МІС	AL FU	NCTIO	ON			-											
Water Quality			Х				1				Х		3				Х		3
Productivity			Х				1				Х		3				Х		3
Nutrient Cycling				Х			2				Х		3				Х		3
	HUN	1AN U	JSE Fl	JNCT	ION														
Human Use Potential					Х		3					Х	4					Х	4
	SITE TOTAL					Pre	24					Post	61	L Baseline 71					

Hybrid Scoring Example

• <u>Pre- vs. Post-</u> <u>Comparison</u>

- Improvement of 254%
- Some conditions
 improved greatly
 (water quality,
 shoreline protection)
- Other conditions did not improve (upland support)

<u>Baseline Comparison</u>

- 27% improvement from pre-restoration conditions to postrestoration conditions, relative to baseline
- Now serves 86% of the function of the reference marsh

Restoration Credit Analysis

- Compared to reference site
 - -Relative benefits = 27%
 - -Start date = 2013
 - -5 years to full maturity
 - -Linear maturity curve
 - -30 year lifespan
 - -3% discount rate
 - -5 DSAYs per acre

Advantages of Using Functional Assessments in HEA

- Provides common framework to estimate service improvements
- Clearly communicates expectations of the restoration project to the public
- Improves linkage between design, valuation, and short- and long-term performance measures

Potential Disadvantages of Using Functional Assessments in HEA

- HEA is a simple tool, allowing maximum flexibility – incorporating functional assessments into process adds complexity
- Very difficult to predict performance of a restored biological system
- Functional assessment metrics do not necessarily translate into ecosystem services

Take Home Messages

- Although very challenging, current regulations require the valuation of services provided from restored habitats
- Incorporating functional assessments into the HEA model provides a more transparent method to predict restoration benefits
- Without a clear basis for the valuation, there is no defensible way to document success or failure of a specific action